1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#![doc = include_str!("../.crate-docs.md")]
#![warn(clippy::pedantic, missing_docs)]
#![allow(
    clippy::module_name_repetitions,
    clippy::missing_errors_doc,
    clippy::doc_lazy_continuation
)]

// for proc-macros
extern crate self as cushy;

#[macro_use]
mod utils;

pub mod animation;
pub mod context;
mod graphics;
mod names;
#[macro_use]
pub mod styles;
mod app;
pub mod debug;
pub mod fonts;
mod tick;
mod tree;
pub mod value;
pub mod widget;
pub mod widgets;
pub mod window;

pub mod dialog;
#[doc(hidden)]
pub mod example;
use std::ops::{Add, AddAssign, Sub, SubAssign};

#[cfg(feature = "tokio")]
pub use app::TokioRuntime;
pub use app::{
    App, AppRuntime, Application, Cushy, DefaultRuntime, Open, PendingApp, Run, ShutdownGuard,
};
/// A macro to create a `main()` function with less boilerplate.
///
/// When creating applications that support multiple windows, this attribute
/// macro can be used to remove a few lines of code.
///
/// The function body is executed during application startup, and the app will
/// continue running until the last window is closed.
///
/// This attribute must be attached to a `main(&mut PendingApp)` or `main(&mut
/// App)` function. Either form supports a return type or no return type.
///
/// ## `&mut PendingApp`
///
/// When using a [`PendingApp`], the function body is invoked before the app is
/// run. While the example shown below does not require the runtime
/// initialization, some programs do and using the macro means the developer
/// will never forget to add the extra code.
///
/// These two example programs are functionally identical:
///
/// ### Without Macro
///
/// ```rust
/// # fn test() {
/// use cushy::{Open, PendingApp, Run};
///
/// fn main() -> cushy::Result {
///     let mut app = PendingApp::default();
///     let cushy = app.cushy().clone();
///     let _guard = cushy.enter_runtime();
///
///     "Hello World".open(&mut app)?;
///
///     app.run()
/// }
/// # }
/// ```
///
/// ### With Macro
///
/// ```rust
/// # fn test() {
/// use cushy::{Open, PendingApp};
///
/// #[cushy::main]
/// fn main(app: &mut PendingApp) -> cushy::Result {
///     "Hello World".open(app)?;
///     Ok(())
/// }
/// # }
/// ```
///
/// ## `&mut App`
///
/// When using an [`App`], the function body is invoked after the app's event
/// loop has begun executing. This is important if the application wants to
/// access monitor information to either position windows precisely or use a
/// full screen video mode.
///
/// These two example programs are functionally identical:
///
/// ### Without Macro
///
/// ```rust
/// # fn test() {
/// use cushy::{App, Open, PendingApp, Run};
///
/// fn main() -> cushy::Result {
///     let mut app = PendingApp::default();
///     app.on_startup(|app| -> cushy::Result {
///         "Hello World".open(app)?;
///         Ok(())
///     });
///     app.run()
/// }
/// # }
/// ```
///
/// ### With Macro
///
/// ```rust
/// # fn test() {
/// use cushy::{App, Open};
///
/// #[cushy::main]
/// fn main(app: &mut App) -> cushy::Result {
///     "Hello World".open(app)?;
///     Ok(())
/// }
/// # }
/// ```
pub use cushy_macros::main;
use figures::units::UPx;
use figures::{IntoUnsigned, Size, Zero};
use kludgine::app::winit::error::EventLoopError;
pub use names::Name;
pub use utils::{Lazy, ModifiersExt, ModifiersStateExt, WithClone};
pub use {figures, kludgine};

pub use self::graphics::{Graphics, RenderOperation, SimpleRenderOperation};
pub use self::tick::{InputState, Tick};

/// Starts running a Cushy application, invoking `app_init` after the event loop
/// has started.
pub fn run<F>(app_init: F) -> Result
where
    F: FnOnce(&mut App) + Send + 'static,
{
    let mut app = PendingApp::default();
    app.on_startup(app_init);
    app.run()
}

/// A limit used when measuring a widget.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum ConstraintLimit {
    /// The widget is expected to occupy a known size.
    Fill(UPx),
    /// The widget is expected to resize itself to fit its contents, trying to
    /// stay within the size given.
    SizeToFit(UPx),
}

impl ConstraintLimit {
    /// Returns `UPx::ZERO` when sizing to fit, otherwise it returns the size
    /// being filled.
    #[must_use]
    pub fn min(self) -> UPx {
        match self {
            ConstraintLimit::Fill(v) => v,
            ConstraintLimit::SizeToFit(_) => UPx::ZERO,
        }
    }

    /// Returns the maximum measurement that will fit the constraint.
    #[must_use]
    pub fn max(self) -> UPx {
        match self {
            ConstraintLimit::Fill(v) | ConstraintLimit::SizeToFit(v) => v,
        }
    }

    /// Converts `measured` to unsigned pixels, and adjusts it according to the
    /// constraint's intentions.
    ///
    /// If this constraint is of a known size, it will return the maximum of the
    /// measured size and the constraint. If it is of an unknown size, it will
    /// return the measured size.
    pub fn fit_measured<Unit>(self, measured: Unit) -> UPx
    where
        Unit: IntoUnsigned<Unsigned = UPx>,
    {
        match self {
            ConstraintLimit::Fill(size) => size.max(measured.into_unsigned()),
            ConstraintLimit::SizeToFit(_) => measured.into_unsigned(),
        }
    }

    /// When `self` is `SizeToFit`, the smallest of the constraint and
    /// `measured` will be returned. When `self` is `Fill`, the fill size will
    /// be returned.
    pub fn fill_or_fit<Unit>(self, measured: Unit) -> UPx
    where
        Unit: IntoUnsigned<Unsigned = UPx>,
    {
        match self {
            ConstraintLimit::Fill(size) => size,
            ConstraintLimit::SizeToFit(size) => size.min(measured.into_unsigned()),
        }
    }
}

/// An extension trait for `Size<ConstraintLimit>`.
pub trait FitMeasuredSize {
    /// Returns the result of calling [`ConstraintLimit::fit_measured`] for each
    /// matching component in `self` and `measured`.
    fn fit_measured<Unit>(self, measured: Size<Unit>) -> Size<UPx>
    where
        Unit: IntoUnsigned<Unsigned = UPx>;
}

impl FitMeasuredSize for Size<ConstraintLimit> {
    fn fit_measured<Unit>(self, measured: Size<Unit>) -> Size<UPx>
    where
        Unit: IntoUnsigned<Unsigned = UPx>,
    {
        Size::new(
            self.width.fit_measured(measured.width),
            self.height.fit_measured(measured.height),
        )
    }
}

impl Add<UPx> for ConstraintLimit {
    type Output = Self;

    fn add(mut self, rhs: UPx) -> Self::Output {
        self += rhs;
        self
    }
}

impl AddAssign<UPx> for ConstraintLimit {
    fn add_assign(&mut self, rhs: UPx) {
        *self = match *self {
            ConstraintLimit::Fill(px) => ConstraintLimit::Fill(px.saturating_add(rhs)),
            ConstraintLimit::SizeToFit(px) => ConstraintLimit::SizeToFit(px.saturating_add(rhs)),
        };
    }
}

impl Sub<UPx> for ConstraintLimit {
    type Output = Self;

    fn sub(mut self, rhs: UPx) -> Self::Output {
        self -= rhs;
        self
    }
}

impl SubAssign<UPx> for ConstraintLimit {
    fn sub_assign(&mut self, rhs: UPx) {
        *self = match *self {
            ConstraintLimit::Fill(px) => ConstraintLimit::Fill(px.saturating_sub(rhs)),
            ConstraintLimit::SizeToFit(px) => ConstraintLimit::SizeToFit(px.saturating_sub(rhs)),
        };
    }
}

/// A result alias that defaults to the result type commonly used throughout
/// this crate.
pub type Result<T = (), E = EventLoopError> = std::result::Result<T, E>;

/// Counts the number of expressions passed to it.
///
/// This is used inside of Cushy macros to preallocate collections.
#[macro_export]
#[doc(hidden)]
macro_rules! count {
    ($value:expr ;) => {
        1
    };
    ($value:expr , $($remaining:expr),+ ;) => {
        1 + $crate::count!($($remaining),+ ;)
    }
}

/// Creates a [`Styles`](crate::styles::Styles) instance with the given
/// name/component pairs.
#[macro_export]
macro_rules! styles {
    () => {{
        $crate::styles::Styles::new()
    }};
    ($($component:expr => $value:expr),*) => {{
        let mut styles = $crate::styles::Styles::with_capacity($crate::count!($($value),* ;));
        $(styles.insert(&$component, $value);)*
        styles
    }};
    ($($component:expr => $value:expr),* ,) => {{
        $crate::styles!($($component => $value),*)
    }};
}

fn initialize_tracing() {
    #[cfg(feature = "tracing-output")]
    {
        use tracing::Level;
        use tracing_subscriber::filter::{LevelFilter, Targets};
        use tracing_subscriber::layer::SubscriberExt;
        use tracing_subscriber::util::SubscriberInitExt;
        use tracing_subscriber::EnvFilter;

        #[cfg(debug_assertions)]
        const MAX_LEVEL: Level = Level::INFO;
        #[cfg(not(debug_assertions))]
        const MAX_LEVEL: Level = Level::ERROR;

        let _result = tracing_subscriber::fmt::fmt()
            .with_max_level(MAX_LEVEL)
            .finish()
            .with(
                EnvFilter::builder()
                    .with_default_directive(LevelFilter::from_level(MAX_LEVEL).into())
                    .from_env_lossy(),
            )
            .with(
                Targets::new()
                    .with_target("winit", Level::ERROR)
                    .with_target("wgpu", Level::ERROR)
                    .with_target("naga", Level::ERROR),
            )
            .try_init();
    }
}